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This paper describes a task that was used, in a broader study on mathematical giftedness and 
mindsets, as part of a process to identify mathematical giftedness in primary school students 
(see Parish, 2019). A discussion of the task, together with an analysis of student responses, 
offers insights that could be used by classroom teachers for both recognising and 
understanding mathematical giftedness. It is important for all classroom teachers to be able 
to recognise exceptional mathematical aptitudes in young students, as mathematically gifted 
students require specific consideration for appropriate teaching and learning experiences.  

Teachers generally do not have difficulty recognising students who do well in 
mathematics, but ‘doing well in mathematics’ does not automatically translate to being 
mathematical gifted. Even more importantly not doing well in mathematics at school does 
not necessarily translate to not being mathematically gifted (Parish, 2014). This paper 
attempts to address the issue of equipping teachers to effectively recognise mathematical 
giftedness, for the ultimate purpose of ensuring appropriate learning experiences for these, 
and other, students in regular classrooms. The first part of the paper briefly defines 
mathematical giftedness in the context of the study the paper is drawn from, followed by a 
discussion about the need for identification of mathematically gifted students. A description 
of two tasks completed by select primary school students in the study, together with an 
analysis of student responses to the tasks, is then presented. Finally, how such tasks could 
be developed and used as a tool for classroom teachers to recognise and understand 
mathematical giftedness, is considered. Note, the paper does not address profoundly gifted 
students (mathematical prodigies). These are exceptional students with special needs that go 
beyond inclusive classroom strategies (Gross, 2004). 

Background and Rationale 
According to the Australian Curriculum, Gagné’s (2003) Differentiated Model of 

Giftedness and Talent [DMGT] provides the most generally accepted definition of both 
giftedness and talent in Australian education (Australian Curriculum Assessment and 
Reporting Authority [ACARA], 2014). According to Gagné’s model, gifted students are 
those whose learning capabilities (in any one, or more domains) is greater than 90% of their 
aged peers. This definition suggests that, on average, there will be two or three gifted 
individuals in any regular class of 20 to 30 students (i.e. 10% of the class). This being the 
case, it is imperative that all classroom teachers are aware of the characteristics and needs of 
gifted students. Indeed, the Australian Curriculum suggests teachers need to be aware of 1) 
how gifted students’ learning processes differ, 2) the ways gifted students may demonstrate 
their learning uniquely, and 3) what differentiated content may be required (ACARA, 2014). 
However, within the domain of mathematics, a search for research-based information for 
teachers on identifying and understanding mathematical giftedness suggests that there is a 
dearth of information readily available. For example, a search of the Australian Primary 
Mathematics Classroom journal (from 1996 to 2018) for the terms ‘gifted’, ‘highly capable’ 
and ‘high achieving’, found only three articles, the most recent of which was published ten 
years ago. Practical classroom applications of research on mathematically gifted students 
seems to be an area of great need, which the study this paper is based on aims to address. 
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The theoretical framework of mathematical giftedness used in this paper, is based on 
Gagné’s DMGT, which differentiates between the gift (inherent aptitude) and talent 
(mastered abilities), with the transformation of gifts into talents requiring appropriate school 
support (ACARA, 2014; Gagné, 2003). With this theoretical underpinning, and the resultant 
implications, it is important that teachers can recognise and understand mathematical 
giftedness. As a brief definition, mathematically gifted are those students who are capable 
of constructing robust neural networks of mathematical understanding (Skemp, 1978) with 
fewer learning experiences than their age peers. These students utilise intuitive reasoning 
based on what Geake (2008) calls fluid analogising, which curtails the need for multiple 
learning experiences. Fluid analogising is a cognitive process that enables quick recognition 
of similarities between problem types that allows for ready generalisations (Krutetskii, 
1976). This can make it appear that a student ‘just knows’ something without being taught, 
but it is vital to understand that gifted students still require appropriate learning experiences 
to ensure constructed concepts and generalisations are accurate and not misconceptions.  

Many current processes for identifying mathematical giftedness, both formal (testing) 
and informal (observational checklists) rely on student achievement – high achievement in 
assessments, perceived achievement in the classroom, outstanding achievement in 
mathematics competitions, et cetera. This is an issue if there are gifted students who are 
underachieving (Siegle, 2013), and if there are high achieving students who have received 
additional tuition in mathematics, or who are extremely motivated. High achievement may 
be a result of intensive learning rather than efficient learning, and high achieving students 
who are not necessarily ‘gifted learners’ may be at risk of burnout if high achievement 
becomes an ongoing expectation (whether that expectation be external or internal). 

An alternate identification process suggested for recognising mathematical giftedness is 
the use of problem-solving tasks (Niederer & Irwin, 2001), whereby teacher observations of 
how a student approaches the tasks provide insights into the way the student thinks and 
reasons mathematically. This may identify students who think ‘differently’, and can uncover 
hidden mathematical aptitudes in students who are not necessarily performing at a high level, 
however, this relies on teachers being able to recognise, and understand, significant 
differences in a student’s way of thinking. This paper discusses how interpreting the 
responses to one particular type of problem task can be used to recognise the unique thinking 
of mathematically gifted students. It is hoped that tasks such as this could be developed into 
an assessment tool for classroom teachers to use, to recognise mathematically gifted 
aptitudes, to differentiate between high achievers and gifted learners, and to ultimately 
inform suitable teaching strategies for supporting individual students’ ongoing learning. 

Methodology and Analysis 
Any process for formally identifying mathematical giftedness needs to be multi-faceted 

(Reis, 2004). The tasks outlined below were one part of a task-based assessment interview, 
which was supplemented by a combination of other identification approaches, including 
teacher and parent perceptions, classroom observations, and archival mathematics 
assessment data that measured student mathematical learning over time.  
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A one-to-one task-based assessment was used so student approaches and thought 
processes in solving the task could be observed (Niederer & Irwin, 2001). A ratio task was 
used to assess the students’ ability to reason proportionally, which has been shown to be a 
good indicator of overall mathematical ability (Lamon, 1999). Furthermore, ratio is not 
formally taught in primary schools in Australia, so students would need to employ their own 
intuitive mathematical understandings (Krutetskii, 1976) to solve the problem. There were 
two versions of the ratio task, Lollies (Parish, 2014) for early and middle primary students 
(see Figure 1), and Oranges and Lemons (Lamon, 1999) for upper primary students (see 
Figure 2).  

Figure 1. Lollies Task, Grade 1 and Grade 3 

Figure 2. Oranges and Lemons Task, Grade 5 

Participants 
The task was used to assess students who had been nominated by their classroom teachers 

as being highly capable mathematically. The primary purpose of the assessment was to 
differentiate between those students who were mathematically gifted learners and those who 
were high achievers but not necessarily gifted. The use of tasks to uncover ‘hidden’ 
capabilities was not a main focus, although some students were nominated by their teachers 
on suspicion of higher mathematical ability than was apparent in class. Twenty-seven 
students from eight Grade 1, Grade 3 and Grade 5 classes in a private primary school in 
regional Victoria were nominated by their teachers as being mathematically highly capable. 
Interviews were conducted one-on-one during school hours, with responses recorded on a 
record sheet. An audio-recording of each interview was also taken to ensure authentic 
representation throughout the analysis (Merriam, 2009). 

Ratio task: Proportional reasoning 

Oranges and Lemons (for upper primary students): (Lamon, 1999) 

Show the student the orange juice/lemon squash card. Provide a sheet of paper and pencil.  

This card shows the number of parts of orange 
juice mixed with lemon squash to make an 
orange and lemon punch. Which mixture will 
taste more orangey, A or B? 

 

Ratio task: Proportional reasoning 

Lollies (for early and middle primary students): (Parish, 2010) 
Place a 10c piece and a packet of three lollies on the table. 
Show the price tag (3 for 10c). 
Provide a piece of paper and pencil. 
a)  A shop sells a packet of three lollies for ten cents. 

i. How much would 12/15 lollies cost? How did you work that out? 
ii. How many lollies could I buy with 60c/80c? How did you work that out? 

For middle primary students – Also show the student the price tag (10 for 35c). 
b)  The same shop sells packets of ten lollies for 35c a packet. 

Which is the better value, three for ten cents, or then for 35c? How did you work that out? 
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Analysis 
Analysis of student responses to the ratio task was based on recognising Krutetskii’s 

(1976) hallmarks of mathematical giftedness. The defining criteria being, 1) a tendency to 
look for the most elegant/efficient pathway to a solution, 2) the invention their own strategies 
for solving an unfamiliar mathematical problem, and 3) an ability to readily generalise prior 
knowledge to solve an unfamiliar type of mathematical problem. The analysis is presented 
as a narrative, using thick descriptions embedded with analytical, integrated interpretations 
to describe collected data (Merriam, 2009; Polkinghorne, 1995). This approach maximises 
the possibility of transferability for readers from a particular case study to other similar 
situations (Merriam, 2009). 

Results 
Selected examples of student responses to the tasks are given in the following three tables 

and discussions. It is important to remember that all these students were nominated by their 
teachers as being mathematically highly capable.  

Table 1.  
Selected examples of Grade 1 responses to the Lollies task (see Figure 1) 

 A shop sells a packet of three lollies for ten cents. 
How much would 12 lollies cost? [40c] 

How many lollies could I buy with 60c? 
[18 lollies]  

Brony Three for ten, so that’s six for 20 cents, and 
another six for 20c is 40c [so 12 lollies cost 40c] 

I counted six on from 12 because if you 
added six more you would have 60c 
(sic) [so I could buy 18 lollies with 60c]. 

Elsa I counted by 3s up to 12 and while I was 
counting I was counting by 10s as well [so 12 
lollies cost 40c] 

I was counting by 2s to 60 and while I 
was counting I was counting by 10s as 
well [so I could buy 102 lollies with 
60c] 

Hazel I added three to the 10 and then another three and 
then another three [so 12 lollies cost 19c] 

 

Brett I don’t know how to work that out  

Table 1 shows a selection of Grade 1 responses. Brony was nominated by her teacher 
because, even though she was a quiet, seemingly average worker, her teacher believed there 
was more depth to her thinking than was immediately obvious. Brony’s responses to the 
Lollies problem were quietly confident, and correct. Her reasoning was very sophisticated 
for her age, seeing the ratio ‘3 for 10c’ as a composite unit, and building up from this (Lo & 
Watanabe, 1997; Parish 2010), as well as being able to elegantly contract this process 
(Krutetskii, 1976) by calculating how much for six lollies and then doubling the result. Elsa 
showed some proportional reasoning ability (simultaneously counting by 3s and by 10s), and 
was able to hold and manipulate these two pieces of information mentally to work out how 
much 12 lollies would cost. However, she confused herself trying to work backwards using 
this same strategy to work out how many lollies 60c would buy. Hazel was among the highest 
achievers on the Grade 1 formal mathematics assessment conducted at the beginning of the 
year, but she did not recognise the structure of the task and solved it using a simple, incorrect, 
counting approach. Her approach to the task nonetheless was equally as confident as 
Brony’s. Brett had been receiving extra mathematics tuition (as a cultural norm) since he 
started school. He performed very well in mathematics classes, but had no strategies at all 
with which to approach this unfamiliar type of mathematical task.  
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Table 2.  
Selected examples of Grade 3 responses to the Lollies task (see Figure 1) 

 A shop sells a packet of 
three lollies for ten cents. 
How much would 15 lollies 
cost? [50c] 

How many lollies could I buy 
with 80c? [24 lollies] 

Which is better value, three 
for 10c, or ten for 35c? [3 
for 10c] 

John 15 lollies cost 50c [used a 
composite-unit/build-up 
strategy (Lo & Watanabe, 
1997; Parish 2010)] 

I could buy 24 lollies with 80c 
[continued with the composite-
unit/build-up strategy] 

Three for 10c is better value 
than 10 for 35c. Three for 
10c, so 9 is 30c and it 
would be less than 5c for 
one lolly [worked out it 
would be a bit more than 3c 
per lolly]. 

Janet 15 lollies cost 50c [used a 
composite-unit/build-up 
strategy] 

I could buy 24 lollies with 80c 
[counted by threes keeping track 
with fingers] 

10 for 35c is better value 
because you get more for 
five more cents. 

Emma 15 lollies cost 50c.  Each 
three is ten cents, so 10, 20, 
30… [skip counted by 3s]. 

I could buy 72 lollies with 80c. 
Eight times ten is 80, and then I 
took away eight because I know 
three times three is nine. 

 

Table 2 shows a selection of Grade 3 data. John, like Brony, was a very quiet, very slow 
worker. He was cautiously nominated by his teacher who wondered if others may be more 
capable than he was. He sat very quietly for a long time, not giving any indication that he 
understood the Lollies question, let alone that he was solving the task. I had just decided he 
was stuck and was about to move on when he came out with the correct answer. He was then 
able to clearly explain his thinking by writing down what he had just done mentally (3=10c, 
6=20c, 9=30c, etc.). His solution was correct and his explanation mathematically robust. He 
employed a mixture of the composite-unit/build-up strategy (Lo & Watanabe, 1997; Parish 
2010) to determine how much and how many, and a mixture of this same strategy, plus 
calculating a unit value for each lolly (a bit more than 3c each), to determine best value. 
Janet was recognised as a very capable mathematics student. She was a quietly confident 
worker who enjoyed mathematics and loved the opportunity to share her successes and 
discoveries with the Principal, which was encouraged. Like John, she correctly used a 
composite-unit/build-up strategy to determine how much and how many, but did not 
negotiate the proportional difference between ‘3 for 10’ and ‘10 for 35’. She understood that 
‘3 for 10’ was equivalent to ‘9 for 30’, but then viewed the extra lolly as simply ‘more’. 
Emma was another confident mathematics student with “very good number sense” according 
to her teacher. She was able to recognise the composite unit of ‘3 for 10’ and build this up 
to ‘15 for 50’, but was not able to reverse the process to calculate ‘how many lollies for 80c’. 
Her reasoning was convoluted, “Eight times ten is 80, and then I took away eight because I 
know three times three is nine”. She seemed confident in her thinking, but did not recognise 
the unreasonableness of her final answer. 

Table 3 shows a selection of Grade 5 data on the Oranges and Lemons task. Murray 
immediately recognised that he could approach the Oranges and Lemon ratio (part-part) 
problem as a fraction (part-whole) problem. He compared two-fifths with three-eighths  
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Table 3.  
Selected examples of Grade 5 responses to the Oranges and Lemons task (see Figure 2) 

 Which mixture will taste more orangey, A or B?  
[NB. A is more orangey] 

Murray Two parts out of five would be more orangey than three parts out of eight. Three eighths 
times two is six eighths [which leaves two eighths]. Two eighths equals 1/4 and 1/5 is less 
than 1/4 … So … actually B is more orangey because 1/4 is the bigger part … no, A is right 
because I was working out which part of lemon was bigger. 

Amy A is more orangey. A is five and B is eight, so the common number is 40. I made it into a 
common number to find out how many oranges. 

Bruce A is just under a half what there is of lemon…[hesitated]. They might be equal, the three and 
the five are sort of the same because they’re both how many lemons, and the two and the 
three are how many oranges. So they’re the same. 

James Two from three is one left over; three from five is two left over. Some people might say B 
because there is more orange, but I think it is the same. 

using a residual thinking strategy (Clarke, Roche & Mitchell, 2011) after manipulating both 
fractions (multiplying by two) so that he would have two fractions that could be easily 
compared: four fifths is one fifth less than one; six eighths is equivalent to three quarters, 
which is one quarter less than one. One fifth and one quarter gave residual fractions which 
could be readily compared. The complexity of proportional reasoning is evidenced in his 
initial confusion – that the bigger residual fraction means less orangey, not more – but he 
was able to successfully renavigate this conundrum. Amy, like Brett in Grade 1, had received 
continuous mathematics tuition throughout her schooling, and was recognised as a very high 
achieving student. She also perceived the task as a fraction problem, and was able to 
correctly answer the question, but the use of a learned procedure (finding a common 
denominator) masked any further conceptual understanding. Bruce recognised that orange 
in A is just under half, demonstrating some conceptual understanding of fractions, but did 
not approach the problem using this knowledge. Instead he reverted to comparing whole 
numbers, and ultimately used a visual approximation to determine that the two mixtures were 
the same. James was another high achiever who had received extra mathematics tuition 
throughout his schooling. He had limited strategies with which to approach the problem, and 
also used a whole number explanation and a visual determination. He indicated that he 
thought it was a ‘trick’ question that would trip up other students, but seemed less than fully 
confident with his own answer.  

Summarising the student responses considering the defining criteria, it can be seen that, 
at least with this task, not all students nominated by their teachers as being highly capable, 
showed evidence of the hallmarks of mathematical giftedness: of finding the most 
elegant/efficient pathway to a solution, inventing strategies, and/or generalising prior 
knowledge to solve an unfamiliar mathematical problem. Moreover, not all students with 
correct solutions showed evidence of these hallmarks of mathematical giftedness, and not 
all students with incorrect solutions lacked evidence of at least some hallmarks of 
mathematical giftedness. Interestingly, it was Brony (Grade 1) and John (Grade 3) who had 
been cautiously nominated by their teachers, who showed the most elegant responses, with 
Brony employing the ‘cleanest, simplest and shortest’ solution path by doubling her halfway 
result. Of the three students who received additional mathematics tuition, and were very high 
achievers in general mathematics assessments, two had no strategy with which to approach 
the task, and the third, Amy (Grade 5) used a learned procedure. While Amy’s answer was 
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correct, using a learned procedure did not provide evidence of the extent of her mathematical 
understanding, where a reasoned response may have. She may indeed be mathematically 
gifted, but has learnt to rely firstly on procedures she has been taught than on her own 
intuition.  

Discussion 
These ratio tasks assessed a student’s ability to reason mathematically in devising a 

method for solving an unfamiliar type of mathematics problem. All students assessed as part 
of the research study had been nominated by their teachers as being mathematically highly 
capable. It can be seen from the results above, however, that responses to an unfamiliar type 
of problem varied greatly. Responses ranged from understanding with intuitive approaches, 
to attempted procedural approaches, to no understanding of how to approach the task.  

There are some important insights from these responses that teachers need to be aware 
of in recognising mathematical aptitudes, and for providing appropriate differentiation for 
mathematically gifted and mathematically high achieving students: 

• The two terms, mathematically gifted and mathematically high achieving, are not 
synonymous. Mathematically gifted students are not always the highest achieving 
students in the classroom, and high achieving students are not necessarily gifted learners.  

• Mathematical giftedness does not automatically translate into high mathematical output 
in the classroom. Teachers need to be on the lookout for students who process 
mathematical thoughts differently, and/or approach mathematical tasks uniquely. 
Regardless of whether they are ‘fast’ or ‘slow’ workers, teachers need to encourage 
individual approaches to tasks that develop mathematical inquiry and creativity. 

• Mathematically gifted students still require appropriate learning experiences to construct 
sound mathematical understandings, but will not require the same repetition, nor the 
same amount of scaffolding as the standard curriculum suggests.  

It is important to note that the interview results do not necessarily classify a student as 
mathematically gifted, or not mathematically gifted. Rather the interview enables teachers 
to recognise students who display mathematically gifted traits (whether a few or many), or 
not (where knowledge may be entirely procedural).  

Conclusion 
Tasks, such as the ratio problems discussed here, could be used by classroom teachers to 

reveal hallmarks of mathematical giftedness. Together with specific identifying criteria 
based on Krutetskii’s observations of mathematical giftedness, a one-to-one assessment tool 
such as this could be used by classroom teachers for informal recognition of mathematical 
giftedness, and for classroom teachers as targeted professional learning on understanding 
common characteristics and learning needs of mathematically gifted students (Clarke, Roche 
& Mitchell, 2011). It is not an assessment tool to be used for selection to gifted programs, 
but for a teacher’s understanding of individual student’s learning needs within a regular 
classroom. The scope of this paper has not included considerations of the specific teaching 
and learning experiences that mathematically gifted students require, but that would be the 
next important step in practical classroom applications of a classroom teacher’s knowledge 
and understanding of mathematical giftedness. 
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